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   General Approach   The eighth edition of  Fluid Mechanics  sees some additions and deletions but no 
philosophical change. The basic outline of eleven chapters, plus appendices, remains 
the same. The triad of integral, differential, and experimental approaches is retained. 
Many problem exercises, and some fully worked examples, have been changed. The 
informal, student-oriented style is retained. A number of new photographs and f gures 
have been added. Many new references have been added, for a total of 445. The writer 
is a f rm believer in “further reading,” especially in the postgraduate years. 

    Learning Tools    The total number of problem exercises continues to increase, from 1089 in the f rst 
edition, to 1683 in this eighth edition. There are approximately 20 new problems in 
each chapter. Most of these are basic end-of-chapter problems, classif ed according 
to topic. There are also Word Problems, multiple-choice Fundamentals of Engineering 
Problems, Comprehensive Problems, and Design Projects. The appendix lists approx-
imately 700 Answers to Selected Problems. 
    The example problems are structured in the text to follow the sequence of recom-
mended steps outlined in Section 1.7. 
  Most of the problems in this text can be solved with a hand calculator. Some can 
even be simply explained in words. A few problems, especially in Chapters 6, 9, and 
10, involve solving complicated algebraic expressions, laborious for a hand calculator. 
Check to see if your institution has a license for equation-solving software. Here the 
writer solves complicated example problems by using the  iterative power of Microsoft 
Off ce Excel, as illustrated, for example, in Example 6.5. For further use in your work, 
Excel also contains several hundred special mathematical functions for engineering 
and statistics. Another benef t: Excel is  free.  

  Content Changes    There are some revisions in each chapter. 
    Chapter 1 has been substantially revised. The pre-reviewers felt, correctly, that it was 
too long, too detailed, and at too high a level for an introduction. Former Section 1.2, 
History of Fluid Mechanics, has been shortened and moved to the end of the chapter. 
Former Section 1.3, Problem-Solving Techniques, has been moved to appear just 
before Example 1.7, where these techniques are f rst used. Eulerian and Lagrangian 
descriptions have been moved to Chapter 4. A temperature-entropy chart for steam 
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has been added, to illustrate when steam can and cannot be approximated as an ideal 
gas. Former Section 1.11, Flow Patterns, has been cut sharply and mostly moved to 
Chapter 4. Former Section 1.13, Uncertainty in Experimental Data, has been moved 
to a new Appendix E. No one teaches “uncertainty” in introductory f uid mechanics, 
but the writer feels it is extremely important in all engineering f elds involving exper-
imental or numerical data. 
  Chapter 2 adds a brief discussion of the fact that pressure is a thermodynamic 
property, not a  force , has no direction, and is not a vector. The arrow, on a surface 
force caused by pressure, causes confusion for beginning students. The subsection of 
Section 2.8 entitled Stability Related to Waterline Area has been shortened to omit 
the complicated derivations. The f nal metacenter formula is retained; the writer does 
not think it is suff cient just to show a sketch of a f oating body falling over. This 
book should have reference value. 
  Chapter 3 was substantially revised in the last edition, especially by moving 
 Bernoulli’s equation to follow the linear momentum section. This time the only 
changes are improvements in the example problems. 
  Chapter 4 now discusses the Eulerian and Lagrangian systems, moved from 
 Chapter 1. The no-slip and no-temperature-jump boundary conditions are added, with 
problem assignments. 
  Chapter 5 explains a bit more about drag force before assigning dimensional 
 analysis problems. It retains Ipsen’s method as an interesting alternative which, of 
course, may be skipped by pi theorem adherents. 
  Chapter 6 downplays the Moody chart a bit, suggesting that students use either 
iteration or Excel. For rough walls, the chart is awkward to read, although it gives an 
approximation for use in iteration. The author’s fancy rearrangement of pi groups to 
solve type 2, f ow rate, and type 3, pipe diameter problems is removed from the main 
text and assigned as problems. For noncircular ducts, the hydraulic  radius  is omitted 
and moved to Chapter 10. There is a new Example 6.11, which solves for pipe 
 diameter and determines if Schedule 40 pipe is strong enough. A general discussion 
of pipe strength is added. There is a new subsection on  laminar-f ow  minor losses, 
 appropriate for micro- and nano-tube f ows. 
  Chapter 7 has more treatment of vehicle drag and rolling resistance, and a rolling 
resistance coeff cient is def ned. There is additional discussion of the Kline-Fogelman 
airfoil, extremely popular now for model aircraft. 
  Chapter 8 has backed off from extensive discussion of CFD methods, as proposed by 
the pre-reviewers. Only a few CFD examples are now given. The inviscid duct-expansion 
example and the implicit boundary layer method are now omitted, but the explicit method 
is retained. For airfoil theory, the writer considers thin-airfoil vortex-sheet theory to be 
obsolete and has deleted it. 
  Chapter 9 now has a better discussion of the normal shock wave. New supersonic 
wave photographs are added. The “new trend in aeronautics” is the Air Force X-35 
Joint Strike Fighter. 
  Chapter 10 improves the def nition of normal depth of a channel. There is a new 
subsection on the water-channel compressible f ow analogy, and problems are assigned 
to f nd the oblique wave angle for supercritical water f ow past a wedge. 
  Chapter 11 greatly expands the discussion of wind turbines, with examples and 
problems taken from the author’s own experience. 
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  Appendices B and D are unchanged. Appendix A adds a list of liquid kinematic 
viscosities to Table A.4. A few more conversion factors are added to Appendix C. 
There is a new Appendix E, Estimating Uncertainty in Experimental Data, which was 
moved from its inappropriate position in Chapter 1. The writer believes that “uncer-
tainty” is vital to reporting measurements and always insisted upon it when he was 
an engineering journal editor. 

    

Adaptive Online Learning Tools   McGraw-Hill   LearnSmart  ®     is available as a standalone product or an integrated 
feature of McGraw-Hill Connect Engineering. It is an adaptive learning system 
designed to help students learn faster, study more eff ciently, and retain more knowl-
edge for greater success.   LearnSmart   assesses a student’s knowledge of course content 
through a series of adaptive questions. It pi  n  points concepts the student does not 
understand and maps out a personalized study plan for su  c  cess. This innovative study 
tool also has features that allow instructors to see exactly what st  u  dents have accom-
plished and a built-in assessment tool for graded assignments. Visit the follo  w  ing site 
for a demonstration:   www.LearnSmartAdvantage.com  

  Powered by the intelligent and adaptive   LearnSmart   engine,   SmartBook  ™   is the 
f rst and only continuously adaptive reading experience available today. Distin-
guishing what students know from what they don’t, and honing in on co  n  cepts they 
are most likely to forget,   SmartBook   personalizes the reading experience for each 
student.   Reading   is no longer a passive and linear experience but an engaging and 
dynamic one, where students are more likely to master and retain important 
 co  n  cepts, coming to class better prepared.   SmartBook   includes powerful reports 
that identify sp  e  cif c topics and learning objectives students need to study.   www.
LearnSmartAdvantage.com  

  McGraw-Hill’s Connect Engineering offers a number of powerful tools and features 
to make ma  n  aging assignments easier, so you can spend more time teaching. Students 
engage with their coursework anytime from anywhere in a personalized way, making 
the learning process more a  c  cessible and eff cient. Connect Engineering optimizes 
your time and energy, enabling you to focus on course content and learning outcomes, 
teaching, and student learning.  

 Online Supplements    A number of supplements are available to instructors at McGraw-Hill’s Connect Engi-
neering®. Instructors may obtain the text images in PowerPoint format and the full 
Solutions Manual in PDF format. The sol  u  tions manual provides complete and detailed 
solutions, including problem statements and artwork, to the end-of-chapter problems. 
Instructors can also obtain access to the Complete Online Solutions Manual O  r  ganiza-
tion System (C.O.S.M.O.S.) for   Fluid Mechanics,   8  th   edition. Instructors can use 
C.O.S.M.O.S. to create exams and assignments, to create custom content, and to edit 
supplied problems and solutions.  
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  Falls on the Nesowadnehunk Stream in Baxter State Park, Maine, which is the northern  terminus 
of the Appalachian Trail. Such f ows, open to the atmosphere, are driven simply by gravity and 
do not depend much upon f uid properties such as density and viscosity. They are discussed later 
in Chap. 10. To the writer, one of the joys of f uid mechanics is that visualization of a f uid-f ow 
process is simple and beautiful  [Photo Credit: Design Pics/Natural Selection Robert Cable].
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  Chapter 1  
  Introduction  

1.1 Preliminary Remarks   Fluid mechanics is the study of f uids either in motion (f uid  dynamics ) or at rest (f uid 
 statics ). Both gases and liquids are classif ed as f uids, and the number of f uid engi-
neering applications is enormous: breathing, blood f ow, swimming, pumps, fans, 
turbines, airplanes, ships, rivers, windmills, pipes, missiles, icebergs, engines, f lters, 
jets, and sprinklers, to name a few. When you think about it, almost everything on 
this planet either is a f uid or moves within or near a f uid. 
  The essence of the subject of f uid f ow is a judicious compromise between theory 
and experiment. Since f uid f ow is a branch of mechanics, it satisf es a set of well-
documented basic laws, and thus a great deal of theoretical treatment is available. However, 
the theory is often frustrating because it applies mainly to idealized situations, which 
may  be invalid in practical problems. The two chief obstacles to a workable theory are 
geometry and viscosity. The basic equations of f uid motion (Chap. 4) are too diff cult 
to enable the analyst to attack arbitrary geometric conf gurations. Thus most textbooks 
 concentrate on f at plates, circular pipes, and other easy geometries. It is possible to 
apply  numerical computer techniques to complex geometries, and specialized textbooks 
are now  available to explain the new  computational f uid dynamics  (CFD)  approximations 
and methods [1–4]. 1  This book will present many  theoretical results while keeping their 
limitations in mind.  
  The second obstacle to a workable theory is the action of viscosity, which can be 
neglected only in certain idealized f ows (Chap.  8). First, viscosity increases the dif-
f culty of the basic equations, although the boundary-layer approximation found by 
Ludwig Prandtl in 1904 (Chap. 7) has greatly simplif ed viscous-f ow analyses. Second, 
viscosity has a destabilizing effect on all f uids, giving rise, at frustratingly small 
velocities, to a disorderly, random phenomenon called  turbulence.  The theory of tur-
bulent f ow is crude and heavily backed up by experiment (Chap. 6), yet it can be quite 
serviceable as an engineering estimate. This textbook only introduces the standard 
experimental correlations for turbulent time-mean f ow. Meanwhile, there are advanced 
texts on both time-mean  turbulence and turbulence modeling  [5, 6] and on the newer, 
computer-intensive  direct numerical simulation  (DNS) of f uctuating turbulence [7, 8]. 

 1 Numbered references appear at the end of each chapter.
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  Thus there is theory available for f uid f ow problems, but in all cases it should be 
backed up by experiment. Often the experimental data provide the main source of 
information about specif c f ows, such as the drag and lift of immersed bodies 
(Chap.  7). Fortunately, f uid mechanics is a highly visual subject, with good instru-
mentation [9–11], and the use of dimensional analysis and modeling concepts (Chap. 5) 
is widespread. Thus experimentation provides a natural and easy complement to the 
theory. You should keep in mind that theory and experiment should go hand in hand 
in all studies of f uid mechanics. 

1.2 The Concept of a Fluid   From the point of view of f uid mechanics, all matter consists of only two states, f uid 
and solid. The difference between the two is perfectly obvious to the layperson, and 
it is an interesting exercise to ask a layperson to put this difference into words. The 
technical distinction lies with the reaction of the two to an applied shear or tangential 
stress.  A solid can resist a shear stress by a static def ection; a f uid ca  n  not . Any 
shear stress applied to a f uid, no matter how small, will result in motion of that f uid. 
The f uid moves and deforms continuously as long as the shear stress is applied. As 
a corollary, we can say that a f uid at rest must be in a state of zero shear stress, a 
state often called the hydrostatic stress condition in structural analysis. In this condi-
tion, Mohr’s circle for stress reduces to a point, and there is no shear stress on any 
plane cut through the element under stress. 
  Given this def nition of a f uid, every layperson also knows that there are two 
classes of f uids,  li  q  uids  and  gases.  Again the distinction is a technical one concerning 
the effect of cohesive forces. A liquid, being composed of relatively close-packed 
molecules with strong cohesive forces, tends to retain its volume and will form a free 
surface in a gravitational f eld if unconf ned from above. Free-surface f ows are domi-
nated by gravitational effects and are studied in Chaps. 5 and 10. Since gas molecules 
are widely spaced with negligible cohesive forces, a gas is free to expand until it 
encounters conf ning walls. A gas has no def nite volume, and when left to itself 
without conf nement, a gas forms an atmosphere that is essentially hydrostatic. The 
hydrostatic behavior of liquids and gases is taken up in Chap. 2. Gases cannot form 
a free surface, and thus gas f ows are rarely concerned with gravitational effects other 
than buoyancy. 
  Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own 
weight. The solid sags into a static def ection, shown as a highly exaggerated dashed 
line, resisting shear without f ow. A free-body diagram of element  A  on the side of 
the block shows that there is shear in the block along a plane cut at an angle  θ  
through   A.  Since the block sides are unsupported, element  A  has zero stress on the 
left and right sides and compression stress  σ   5   2  p  on the top and bottom. Mohr’s 
circle does not reduce to a point, and there is nonzero shear stress in the block. 
  By contrast, the liquid and gas at rest in Fig.  1.1 require the supporting walls in 
order to eliminate shear stress. The walls exert a compression stress of  2  p  and reduce 
Mohr’s circle to a point with zero shear everywhere—that is, the hydrostatic  condition. 
The liquid retains its volume and forms a free surface in the container. If the walls 
are removed, shear develops in the liquid and a big splash results. If the  container 
is  tilted, shear again develops, waves form, and the free surface seeks a horizontal 
 conf guration, pouring out over the lip if necessary. Meanwhile, the gas is unrestrained 
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and expands out of the container, f lling all available space. Element  A  in the gas is 
also hydrostatic and exerts a compression stress  2  p  on the walls. 
  In the previous discussion, clear decisions could be made about solids, liquids, and 
gases. Most engineering f uid mechanics problems deal with these clear cases—that 
is, the common liquids, such as water, oil, mercury, gasoline, and alcohol, and the 
common gases, such as air, helium, hydrogen, and steam, in their common tempera-
ture and pressure ranges. There are many borderline cases, however, of which you 
should be aware. Some apparently “solid” substances such as asphalt and lead resist 
shear stress for short periods but actually deform slowly and exhibit def nite f uid 
behavior over long periods. Other substances, notably colloid and slurry mixtures, 
resist small shear stresses but “yield” at large stress and begin to f ow as f uids do. 
Specialized textbooks are devoted to this study of more general deformation and f ow, a 
f eld called  rheology  [16]. Also, liquids and gases can coexist in two-phase mixtures, 
such as steam–water mixtures or water with entrapped air bubbles. Specialized text-
books present the analysis of such  multiphase f ows  [17]. Finally, in some situations 
the distinction between a liquid and a gas blurs. This is the case at temperatures and 
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pressures above the so-called  critical point  of a substance, where only a single phase 
exists, primarily resembling a gas. As pressure increases far above the critical point, 
the gaslike substance becomes so dense that there is some resemblance to a liquid, and the 
usual thermodynamic approximations like the perfect-gas law become inaccurate. The critical 
temperature and pressure of water are  T  c   5  647 K and  p  c   5  219 atm  (atmosphere) 2  
so that typical problems involving water and steam are below the critical point. Air, 
being a mixture of gases, has no distinct critical point, but its principal component, 
nitrogen, has  T  c   5  126 K and  p  c   5  34 atm. Thus typical problems involving air are 
in the range of high temperature and low pressure where air is distinctly and def nitely 
a gas. This text will be concerned solely with clearly identif able liquids and gases, 
and the borderline cases just discussed will be beyond our scope.  

1.3 The Fluid as a Continuum   We have already used technical terms such as  f uid pressure  and  density  without a 
rigorous discussion of their def nition. As far as we know, f uids are aggregations of 
molecules, widely spaced for a gas, closely spaced for a liquid. The distance between 
molecules is very large compared with the molecular diameter. The molecules are not 
f xed in a lattice but move about freely relative to each other. Thus f uid density, or 
mass per unit volume, has no precise meaning because the number of molecules 
occupying a given volume continually changes. This effect becomes unimportant if 
the unit volume is large compared with, say, the cube of the molecular spacing, when 
the number of molecules within the volume will remain nearly constant in spite of the 
enormous interchange of particles across the boundaries. If, however, the chosen unit 
volume is too large, there could be a noticeable variation in the bulk aggregation of 
the particles. This situation is illustrated in Fig. 1.2, where the “density” as calculated 
from molecular mass  δ  m  within a given volume  δ     9  is plotted versus the size of the 
unit volume. There is a limiting volume  δ     9 * below which molecular variations may 
be important and above which aggregate variations may be important. The  density   ρ  of 
a f uid is best def ned as 

  ρ 5 lim
δ 9Sδ 9*

 
δm

δ 9
  (1.1)  

 2 One atmosphere equals 2116 lbf/ft 2   5  101,300 Pa.

Microscopic 
uncertainty

Macroscopic 
uncertainty

0

1200

 10–9 mm3

Elemental
volume

Region containing fuid  

    = 1000 kg/m3

    = 1100

    = 1200

    = 1300

(a) (b) 

δ9
δ9* ≈

ρ

ρ

ρ

ρ

ρ

δυ

 Fig. 1.  2    The limit def nition of 
continuum f uid density: ( a ) an 
elemental volume in a f uid region 
of variable continuum density; 
( b ) calculated density versus size 
of the elemental volume.



1.4  Dimensions and Units 7

  Th e limiting volume  δ     9 * is about 10 2  9  mm 3  for all liquids and for gases at atmo-
spheric pressure. For example, 10 2  9  mm 3  of air at standard conditions contains 
approximately 3  3  10 7  molecules, which is suff cient to def ne a nearly constant density 
according to Eq. (1.1). Most engineering problems are concerned with physical dimensions 
much larger than this limiting volume, so that density is essentially a point function 
and f uid properties can be thought of as varying continually in space, as sketched in 
Fig. 1.2a. Such a f uid is called a  continuum,  which simply means that its variation in 
properties is so smooth that differential calculus can be used to analyze the substance. 
We shall assume that continuum calculus is valid for all the analyses in this book. 
Again there are borderline cases for gases at such low pressures that molecular spacing 
and mean free path 3  are comparable to, or larger than, the physical size of the system. 
This requires that the continuum approximation be dropped in favor of a molecular 
theory of raref ed gas f ow [18]. In principle, all f uid mechanics problems can be 
attacked from the molecular viewpoint, but no such attempt will be made here. Note 
that the use of continuum calculus does not preclude the possibility of discontinuous 
jumps in f uid properties across a free surface or f uid interface or across a shock 
wave in a compressible f uid (Chap. 9). Our calculus in analyzing f uid f ow must be 
f exible enough to handle discontinuous boundary conditions.  

1.4 Dimensions and Units   A  dimension  is the measure by which a physical variable is expressed quantitatively. 
A  unit  is a particular way of attaching a number to the quantitative dimension. Thus 
length is a dimension associated with such variables as distance, displacement, width, 
def ection, and height, while centimeters and inches are both numerical units for 
expressing length. Dimension is a powerful concept about which a splendid tool called 
 dimensional analysis  has been developed (Chap.  5), while units are the numerical 
quantity that the customer wants as the f nal answer. 
  In 1872 an international meeting in France proposed a treaty called the Metric 
Convention, which was signed in 1875 by 17 countries including the United States. 
It was an improvement over British systems because its use of base 10 is the founda-
tion of our number system, learned from childhood by all. Problems still remained 
because even the metric countries differed in their use of kiloponds instead of dynes 
or newtons, kilograms instead of grams, or calories instead of joules. To standardize 
the metric system, a General Conference of Weights and Measures, attended in 1960 
by 40 countries, proposed the  International System of Units  (SI). We are now under-
going a painful period of transition to SI, an adjustment that may take many more 
years to complete. The professional societies have led the way. Since July 1, 1974, 
SI units have been required by all papers published by the American Society of 
Mechanical Engineers, and there is a textbook explaining the SI [19]. The present text 
will use SI units together with British gravitational (BG) units. 

Primary Dimensions   In f uid mechanics there are only four  primary dimensions  from which all other dimen-
sions can be derived: mass, length, time, and temperature. 4  These dimensions and 

 3 The mean distance traveled by molecules between collisions (see Prob. P1.5).
 4 If electromagnetic effects are important, a f fth primary dimension must be included, electric current 

{ I }, whose SI unit is the ampere (A).
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their units in both systems are given in Table 1.1. Note that the Kelvin unit uses no 
degree symbol. The braces around a symbol like { M } mean “the dimension” of mass. 
All other variables in f uid mechanics can be expressed in terms of { M }, { L }, { T }, 
and  {Θ }. For example, acceleration has the dimensions { LT   2  2 }. The most crucial of 
these secondary dimensions is force, which is directly related to mass, length, and 
time by Newton’s second law. Force equals the time rate of change of momentum or, 
for constant mass, 

  F 5 ma  (1.2)   

 From this we see that, dimensionally, { F }  5  { MLT   2  2 }. 

The International System (SI)   The use of a constant of proportionality in Newton’s law, Eq.  (1.2), is avoided 
by def ning the force unit exactly in terms of the other basic units. In the SI sys-
tem, the basic units are newtons { F }, kilograms { M }, meters { L }, and seconds 
{ T }. We def ne 

 1 newton of force 5 1 N 5 1 kg # 1 m/s2 

 The newton is a relatively small force, about the weight of an apple (0.225 lbf ). In 
addition, the basic unit of temperature {®} in the SI system is the degree Kelvin, K. 
Use of these SI units (N, kg, m, s, K) will require no conversion factors in our 
equations. 

The British Gravitational (BG) 
System

  In the BG system also, a constant of proportionality in Eq. (1.2) is avoided by def n-
ing the force unit exactly in terms of the other basic units. In the BG system, the 
basic units are pound-force { F }, slugs { M }, feet { L }, and seconds { T }. We def ne 

 1 pound of force 5 1 lbf 5 1 slug # 1 ft/s2 

 One lbf < 4.4482 N and approximates the weight of four apples. We will use the 
abbreviation  lbf  for pound-force and  lbm  for pound-mass. The slug is a rather 
hefty  mass, equal to 32.174 lbm. The basic unit of temperature { Θ } in the BG 
system is the degree Rankine,  8 R. Recall that a temperature difference 1 K  5  1.8 8 R. 
Use of these BG units (lbf, slug, ft, s,  8 R) will require no conversion factors in our 
equations. 

Other Unit Systems   There are other unit systems still in use. At least one needs no proportionality  constant: 
the CGS system (dyne, gram, cm, s, K). However, CGS units are too small for most 
applications (1 dyne  5  10 2  5  N) and will not be used here. 

Primary dimension SI unit BG unit Conversion factor

Mass {M} Kilogram (kg) Slug 1 slug 5 14.5939 kg
Length {L} Meter (m) Foot (ft) 1 ft 5 0.3048 m
Time {T} Second (s) Second (s) 1 s 5 1 s
Temperature {Θ} Kelvin (K) Rankine (8R) 1 K 5 1.88R

Table 1.1 Primary Dimensions in 
SI and BG Systems
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  In the USA, some still use the English Engineering system (lbf, lbm, ft, s,  8 R), where 
the basic mass unit is the  pound of mass . Newton’s law (1.2) must be rewritten: 

  F 5
ma
gc

, where gc 5 32.174 
ft # lbm

lbf # s2   (1.3)  

 The constant of proportionality,  g  c , has both dimensions and a numerical value not 
equal to 1.0. The present text uses only the SI and BG systems and will not solve 
problems or examples in the English Engineering system. Because Americans still 
use them, a few problems in the text will be stated in truly awkward units: acres, 
gallons, ounces, or miles. Your assignment will be to convert these and solve in the 
SI or BG systems. 

The Principle of 
Dimensional Homogeneity

  In engineering and science,  all  equations must be  dimensionally homogeneous,  that 
is, each additive term in an equation must have the same dimensions. For example, 
take Bernoulli’s incompressible equation, to be studied and used throughout this text: 

 p 1
1

2
 ρV2 1 ρgZ 5 constant 

 Each and every term in this equation  must  have dimensions of pressure { ML  2  1  T   2  2 }. We 
will examine the dimensional homogeneity of this equation in detail in Example 1.3. 
  A list of some important secondary variables in f uid mechanics, with dimensions 
derived as combinations of the four primary dimensions, is given in Table 1.2. A more 
complete list of conversion factors is given in App. C. 

Secondary dimension SI unit BG unit Conversion factor

Area {L2} m2 ft2 1 m2 5 10.764 ft2

Volume {L3} m3 ft3 1 m3 5 35.315 ft3

Velocity {LT 21} m/s ft/s 1 ft/s 5 0.3048 m/s
Acceleration {LT 22} m/s2 ft/s2 1 ft/s2 5 0.3048 m/s2

Pressure or stress {ML21T 22} Pa 5 N/m2 lbf/ft2 1 lbf/ft2 5 47.88 Pa
Angular velocity {T 21} s21 s21 1 s21 5 1 s21

Energy, heat, work {ML2T 22} J 5 N ∙ m ft ∙ lbf 1 ft ∙ lbf 5 1.3558 J
Power {ML2T 23} W 5 J/s ft ∙ lbf/s 1 ft ∙ lbf/s 5 1.3558 W
Density {ML23} kg/m3 slugs/ft3 1 slug/ft3 5 515.4 kg/m3

Viscosity {ML21T 21} kg/(m ∙ s) slugs/(ft ∙ s) 1 slug/(ft ∙ s) 5 47.88 kg/(m ∙ s)
Specif c heat {L2T 22Q21} m2/(s2 ∙ K) ft2/(s2 ∙ 8R) 1 m2/(s2 ∙ K) 5 5.980 ft2/(s2 ∙ 8R)

Table 1.2 Secondary Dimensions 
in Fluid Mechanics

  EXAMPLE 1.1  

 A body weighs 1000 lbf when exposed to a standard earth gravity  g   5  32.174 ft/s 2 . ( a ) What 
is its mass in kg? ( b ) What will the weight of this body be in N if it is exposed to the 
moon’s standard acceleration  g  moon   5  1.62 m/s 2 ? ( c ) How fast will the body accelerate if a 
net force of 400 lbf is applied to it on the moon or on the earth? 
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  Solution  

  We need to f nd the ( a ) mass; ( b ) weight on the moon; and ( c ) acceleration of this body. This 
is a fairly simple example of conversion factors for differing unit systems. No property data is 
needed. The example is too low-level for a sketch. 

Part (a) Newton’s law (1.2) holds with known weight and gravitational acceleration. Solve for  m: 

 F 5 W 5 1000 lbf 5 mg 5 (m) (32.174 ft/s2), or m 5
1000 lbf

32.174 ft/s2 5 31.08 slugs 

 Convert this to kilograms: 

  m 5 31.08 slugs 5 (31.08 slugs)(14.5939 kg/slug) 5 454 kg    Ans  . (  a  )  

Part (b) The mass of the body remains 454 kg regardless of its location. Equation (1.2) applies with a 
new gravitational acceleration and hence a new weight:

     F 5 Wmoon 5 mgmoon 5 (454 kg)(1.62 m/s2) 5 735 N 5 165 lbf     Ans  . (  b  )  

Part (c)  This part does not involve weight or gravity or location. It is simply an application of  Newton’s 
law with a known mass and known force: 

 F 5 400 lbf 5 ma 5 (31.08 slugs) a 
 Solve for 

  a 5
400 lbf

31.08 slugs
5 12.87 

ft

s2  a0.3048 
m

ft
b 5 3.92 

m

s2   Ans  . (  c  )  

  Comment (c):  This acceleration would be the same on the earth or moon or anywhere. 

  Many data in the literature are reported in inconvenient or arcane units suitable 
only to some industry or specialty or country. The engineer should convert these data 
to the SI or BG system before using them. This requires the systematic application 
of conversion factors, as in the following example. 

  EXAMPLE 1.2  

 Industries involved in viscosity measurement [27, 29] continue to use the CGS system of 
units, since centimeters and grams yield convenient numbers for many f uids. The absolute 
viscosity ( μ ) unit is the  poise,  named after J. L. M. Poiseuille, a French physician who in 
1840 performed pioneering experiments on water f ow in pipes; 1 poise  5  1 g/(cm-s). The 
kinematic viscosity ( ν ) unit is the  stokes,  named after G. G. Stokes, a British physicist who 
in 1845 helped develop the basic partial differential equations of f uid momentum; 1 stokes  5  
1 cm 2 /s. Water at 20 8 C has  μ   <  0.01 poise and also  ν   <  0.01 stokes. Express these results 
in ( a ) SI and ( b ) BG units. 

  Solution  

    Part (a)   •    Approach:  Systematically change grams to kg or slugs and change centimeters to meters 
or feet. 
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  •     Property values:    Given  μ   5  0.01 g/(cm-s) and  ν   5  0.01 cm 2 /s. 
  •     Solution steps:    (a) For conversion to SI units, 

 μ 5 0.01 
g

cm # s 5 0.01 
g(1 kg/1000 g)

cm(0.01 m/cm)s
5 0.001 

kg
m # s  

   ν 5 0.01 
cm2

s 5 0.01 
cm2(0.01 m/cm)2

s 5 0.000001 
m2

s   Ans.   (  a  )  

  Part (b)     •    For conversion to BG units 

   μ 5 0.01 
g

cm # s 5 0.01 
g(1 kg/1000 g)(1 slug/14.5939 kg)

(0.01 m/cm)(1 ft/0.3048 m)s
5 0.0000209 

slug

ft # s
 

   ν 5 0.01 
cm2

s 5 0.01 
cm2(0.01 m/cm)2(1 ft/0.3048 m)2

s 5 0.0000108 
ft2

s   Ans.   (  b  )  

  •   Comments:    This was a laborious conversion that could have been shortened by using 
the direct viscosity conversion factors in App. C or the inside front cover. For example, 
 μ  BG   5   μ  SI /47.88. 

  We repeat our advice: Faced with data in unusual units, convert them immediately 
to either SI or BG units because (1) it is more professional and (2) theoretical equa-
tions in f uid mechanics are  dime  n  sionally consistent  and require no further conversion 
factors when these two fundamental unit systems are used, as the following example 
shows. 

  EXAMPLE 1.3  

 A useful theoretical equation for computing the relation between pressure, velocity, and 
altitude in a steady f ow of a nearly inviscid, nearly incompressible f uid with negligible 
heat transfer and shaft work 5  is the  Bernoulli relation,  named after Daniel Bernoulli, who 
published a hydrodynamics textbook in 1738:  

  p0 5 p 1 1
2 ρV2 1 ρgZ  (1)  

 where  p  0   5  stagnation pressure 
   p   5  pressure in moving f uid 
   V   5  velocity 
     ρ   5  density 
   Z   5  altitude 
   g   5  gravitational acceleration 

 ( a ) Show that Eq. (1) satisf es the principle of dimensional homogeneity, which states that all 
additive terms in a physical equation must have the same dimensions. ( b ) Show that consistent 
units result without additional conversion factors in SI units. ( c ) Repeat ( b ) for BG units. 

 5 That’s an awful lot of assumptions, which need further study in Chap. 3.
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  Solution  

  Part (a)  We can express Eq. (1) dimensionally, using braces, by entering the dimensions of each term 
from Table 1.2: 

  5ML 
21T 

226 5 5ML 
21T 

226 1 5ML 
2365L2T 

226 1 5ML 
2365LT 

 2265L6 
   5 5ML 21T 

 226 for all terms   Ans.   (  a  )  

  Part (b)  Enter the SI units for each quantity from Table 1.2: 

 5N/m26 5 5N/m26 1 5kg/m365m2/s26 1 5kg/m365m/s265m6 
  5 5N/m26 1 5kg/(m # s2)6  

 The right-hand side looks bad until we remember from Eq.  (1.3) that 1 kg  5  1 N ∙ s 2 /m. 

   5kg/(m # s2)6 5
5N # s2/m65m # s26 5 5N/m26  Ans.   (  b  )  

 Thus all terms in Bernoulli’s equation will have units of pascals, or newtons per square 
meter, when SI units are used. No conversion factors are needed, which is true of all theo-
retical equations in f uid mechanics. 

  Part (c)  Introducing BG units for each term, we have 

 5lbf/ft26 5 5lbf/ft26 1 5slugs/ft365ft2/s26 1 5slugs/ft365ft/s265ft6 
  5 5lbf/ft26 1 5slugs/(ft # s2)6  

 But, from Eq.  (1.3), 1 slug  5  1 lbf ∙ s 2 /ft, so that 

  5slugs/(ft # s2)6 5
5lbf # s2/ft65ft # s26 5 5lbf/ft26  Ans.   (  c  )  

 All terms have the unit of pounds-force per square foot. No conversion factors are needed 
in the BG system either. 

  There is still a tendency in English-speaking countries to use pound-force per 
square inch as a pressure unit because the numbers are more manageable. For exam-
ple, standard atmospheric pressure is 14.7 lbf/in 2   5  2116 lbf/ft 2   5  101,300 Pa. The 
pascal is a small unit because the newton is less than 1

4 lbf and a square meter is a 
very large area. 

 Consistent Units  Note that not only must all (f uid) mechanics equations be dimensionally homoge-
neous, one must also use  consistent units;  that is, each additive term must have 
the same units. There is no trouble doing this with the SI and BG systems, as 
in  Example 1.3, but woe unto those who try to mix colloquial English units. For 
example, in Chap. 9, we often use the assumption of steady adiabatic compressible 
gas f ow: 

 h 1 1
2V 

2 5 constant 
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 where  h  is the f uid enthalpy and  V  2 /2 is its kinetic energy per unit mass. Colloquial 
thermodynamic tables might list  h  in units of British thermal units per pound mass 
(Btu/lb), whereas  V  is likely used in ft/s. It is completely erroneous to add Btu/lb to 
ft 2 /s 2 . The proper unit for  h  in this case is ft ∙ lbf/slug, which is identical to ft 2 /s 2 . The 
conversion factor is 1 Btu/lb  <  25,040 ft 2 /s 2   5  25,040 ft ∙ lbf/slug. 

 Homogeneous versus 
Dimensionally Inconsistent 
Equations

 All theoretical equations in mechanics (and in other physical sciences) are   dimensionally 
homogen  e  ous;  that is, each additive term in the equation has the same dimensions. 
However, the reader should be warned that many empirical formulas in the  engineering 
literature, arising primarily from correlations of data, are dimensionally inconsistent. 
Their units cannot be reconciled simply, and some terms may contain hidden vari-
ables. An example is the formula that pipe valve manufacturers cite for liquid volume 
f ow rate  Q  (m 3 /s) through a partially open valve: 

 Q 5 CVa¢p

SG
b1/2

 

 where  D  p  is the pressure drop across the valve and SG is the specif c gravity of the 
liquid (the ratio of its density to that of water). The quantity  C  V  is the  valve f ow 
coeff cient,  which manufacturers tabulate in their valve brochures. Since SG is 
dimensionless {1}, we see that this formula is totally inconsistent, with one side 
being a f ow rate { L  3 / T } and the other being the square root of a pressure drop 
{ M  1/2 / L  1/2  T }. It follows that  C  V  must have dimensions, and rather odd ones at that: 
{ L  7/2 / M  1/2 }. Nor is the resolution of this discrepancy clear, although one hint is that 
the values of  C  V  in the literature increase nearly as the square of the size of the 
valve. The presentation of experimental data in homogeneous form is the subject of 
 dime  n  sional analysis  (Chap.  5). There we shall learn that a homogeneous form for 
the valve f ow relation  is 

 Q 5 CdAopeninga¢p

ρ
b1/2

 

 where  ρ  is the liquid density and  A  the area of the valve opening. The  discharge 
coeff cient   C  d  is dimensionless and changes only moderately with valve size. Please 
believe—until we establish the fact in Chap. 5—that this latter is a  much  better for-
mulation of the data. 
  Meanwhile, we conclude that dimensionally inconsistent equations, though they 
occur in engineering practice, are misleading and vague and even dangerous, in the 
sense that they are often misused outside their range of applicability. 

 Convenient Pref xes in 
Powers of 10

 Engineering results often are too small or too large for the common units, with too 
many zeros one way or the other. For example, to write  p   5  114,000,000 Pa is long 
and awkward. Using the pref x “M” to mean 10 6 , we convert this to a concise  p   5  
114 MPa (megapascals). Similarly,  t   5  0.000000003 s is a proofreader’s nightmare 
compared to the equivalent  t   5  3 ns (nanoseconds). Such pref xes are common and 
convenient, in both the SI and BG systems. A complete list is given in Table 1.3. 

Table 1.3 Convenient Pref xes 
for Engineering Units

 Multiplicative 
 factor Pref x Symbol

 1012 tera T
 109 giga G
 106 mega M
 103 kilo k
 102 hecto h
 10 deka da
 1021 deci d
 1022 centi c
 1023 milli m
 1026 micro μ

 1029 nano n
 10212 pico p
 10215 femto f
 10218 atto a
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  EXAMPLE 1.4  

 In 1890 Robert Manning, an Irish engineer, proposed the following empirical formula for 
the average velocity  V  in uniform f ow due to gravity down an open channel (BG units): 

  V 5
1.49

n
R2/3S1/2  (1)  

 where  R   5  hydraulic radius of channel (Chaps. 6 and 10) 
   S   5  channel slope (tangent of angle that bottom makes with horizontal) 
   n   5  Manning’s roughness factor (Chap. 10) 

 and  n  is a constant for a given surface condition for the walls and bottom of the channel. 
( a ) Is Manning’s formula dimensionally consistent? ( b ) Equation (1) is commonly taken to 
be valid in BG units with  n  taken as dimensionless. Rewrite it in SI form. 

  Solution  

  •   Assumption:  The channel slope  S  is the tangent of an angle and is thus a dimensionless 
ratio with the dimensional notation {1}—that is, not containing  M ,  L , or  T . 

  •     Approach (a):  Rewrite the dimensions of each term in Manning’s equation, using 
 brackets {}: 

 5V6 5 e 1.49
n
f 5R2/36 5S1/26 or  e L

T
f 5 e 1.49

n
f 5L2/36 516 

 This formula is incompatible unless {1.49/ n }  5  { L  1/3 / T }. If  n  is dimensionless (and 
it is never listed with units in textbooks), the number 1.49 must carry the dimensions of 
{ L  1/3 / T }.  Ans.   (  a  )  

  •   Comment (a):  Formulas whose numerical coeff cients have units can be disastrous for 
engineers working in a different system or another f uid. Manning’s formula, though 
popular, is inconsistent both dimensionally and physically and is valid only for water f ow 
with certain wall roughnesses. The effects of water viscosity and density are hidden in 
the numerical value 1.49. 

  •     Approach (b):  Part ( a ) showed that 1.49 has dimensions. If the formula is valid in BG 
units, then it must equal 1.49 ft 1/3 /s. By using the SI conversion for length, we obtain 

 (1.49 ft1/3/s) (0.3048 m/ft)1/3 5 1.00 m1/3/s 

 Therefore, Manning’s inconsistent formula changes form when converted to the SI system: 

  SI units: V 5
1.0
n

 R2/3S1/2  Ans.   (  b  )  

 with  R  in meters and  V  in meters per second. 
  •     Comment (b):  Actually, we misled you: This is the way Manning, a metric user, f rst 

proposed the formula. It was later converted to BG units. Such dimensionally inconsistent 
formulas are dangerous and should either be reanalyzed or treated as having very limited 
application. 
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  In a given f ow situation, the determination, by experiment or theory, of the properties 
of the f uid as a function of position and time is considered to be the  solution  to the 
problem. In almost all cases, the emphasis is on the space–time distribution of the 
f uid properties. One rarely keeps track of the actual fate of the specif c f uid particles. 
This treatment of properties as continuum-f eld functions distinguishes f uid mechan-
ics from solid mechanics, where we are more likely to be interested in the trajectories 
of individual particles or systems. 

 The Velocity Field  Foremost among the properties of a f ow is the velocity f eld  V ( x ,  y ,  z ,  t ). In fact, 
determining the velocity is often tantamount to solving a f ow problem, since other 
properties follow directly from the velocity f eld. Chapter 2 is devoted to the calcula-
tion of the pressure f eld once the velocity f eld is known. Books on heat transfer (for 
example, Ref. 20) are largely devoted to f nding the temperature f eld from known 
velocity f elds. 
  In general, velocity is a vector function of position and time and thus has three 
components  u ,  v , and  w , each a scalar f eld in itself: 

  V(x, y, z, t) 5 iu(x, y, z, t) 1 jv(x, y, z, t) 1 kw(x, y, z, t)   (1.4)  

 The use of  u ,  v , and  w  instead of the more logical component notation  V  x ,  V  y , and  V  z  
is the result of an almost unbreakable custom in f uid mechanics. Much of this text-
book, especially Chaps. 4, 7, 8, and 9, is concerned with f nding the distribution of 
the velocity vector  V  for a variety of practical f ows. 

 The Acceleration Field  The acceleration vector,  a   5   d  V / dt , occurs in Newton’s law for a f uid and thus is 
very important. In order to follow a particle in the Eulerian frame of reference, the 
f nal result for acceleration is nonlinear and quite complicated. Here we only give the 
formula: 
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 where ( u, v, w ) are the velocity components from Eq.  (1.4). We shall study this for-
mula in detail in Chap. 4. The last three terms in Eq. (1.5) are nonlinear products and 
greatly complicate the analysis of general f uid motions, especially viscous f ows. 

 1.6 Thermodynamic Properties 
of a Fluid

 While the velocity f eld  V  is the most important f uid property, it interacts closely 
with the thermodynamic properties of the f uid. We have already introduced into the 
discussion the three most common such properties: 

 1. Pressure  p  

 2. Density  ρ  

 3. Temperature  T  

1.5 Properties of the 
Velocity Field




